
논문 24-49-10-12 The Journal of Korean Institute of Communications and Information Sciences '24-10 Vol.49 No.10
https://doi.org/10.7840/kics.2024.49.10.1447

1447

Ⅰ. Introduction

Object detection is a crucial component of com-

puter vision with applications spanning autonomous

vehicles[1], traffic systems[2], medical technology[3],

and robotics[4]. The significance of this technology lies

in its ability to accurately recognize and classify vari-

ous items present in images or videos[5]. Crucially,

performing object detection on an edge device facili-

tates local execution, thus eliminating the need for an

internet connection. This approach, tailored to a spe-

cific peripheral device, provides efficient processing

capabilities, reduces latency, and addresses privacy

concerns by avoiding data transmission over the

internet. Real-time on-device object detection, as im-

plemented in autonomous vehicles, enables rapid deci-

sion-making that enhances safety. Additionally, the lo-

cal processing model effectively addresses cyberse-

curity concerns by ensuring that sensitive information

remains confined to the device, thus improving both

privacy and security standards[6].

Object detection is a task in computer vision that

involves identifying and precisely localizing objects

within digital images or video streams. The primary

goal is to determine the presence and position of vari-

ous items accurately, often within complex environ-

※ This work was partly supported by Innovative Human Resource Development for Local Intellectualization program through the
Institute of Information Communications Technology Planning Evaluation(IITP) grant funded by the Korea government(MSIT)
(IITP-2024-RS-2020-II201612, 50%) and by the MSIT(Ministry of Science and ICT), Korea, under the ITRC(Information
Technology Research Center) support program(IITP-2024-RS-2024-00438430, 50%) supervised by the IITP.

w First Author : Kumoh National Institute of Technology, Dept. of IT Convergence Engineering, shantoa729@kumoh.ac.kr, 학생회원
° Corresponding Author : Kumoh National Institute of Technology, Dept. of Computer SW Engineering, taesoo.jun@gmail.com,
정회원

* Kumoh National Institute of Technology, Dept. of IT Convergence Engineeringr dskim@kumoh.ac.kr, 종신회원
논문번호：202405-085-0-SE, Received April 29, 2024; Revised June 21, 2024; Revised July 17, 2024; Accepted July 18, 2024

Lightweighted Real-Time Object Detection on a Custom Edge
Device

Md Javed Ahmed Shantow, Dong-Seong Kim*, Taesoo Jun°

ABSTRACT

With recent innovations in AI and software technology, on-device object detection has drawn significant

attention. This technique enables real-time processing of visual data without the need for a connection to a

distant server. However, deploying these models on resource-constrained edge devices presents several

challenges. The primary obstacles stem from the limited processing power, memory, and storage capacity of

these devices, as well as software issues. The current constraints make training artificial intelligence inefficient,

as it requires substantial storage and computational power. Moreover, the development of devices based on

ARM architecture demands the training and implementation of a customized model specifically designed for

that edge device. This article discusses the development of a lightweight object recognition model that utilizes

a TensorFlow Lite model and achieves a high accuracy rate of 94% on a custom edge device. This study also

presents techniques for implementing this method using a custom file, demonstrates new performance metrics,

and yields favorable results compared to existing benchmarks.

Key Words : Artificial Intelligence, Custom Edge Device, Edge Computing, Object Detection, Real-time

Processing, TensorFlow Lite

mailto:shantoa729@kumoh.ac.kr
mailto:taesoo.jun@gmail.com
mailto:dskim@kumoh.ac.kr


The Journal of Korean Institute of Communications and Information Sciences '24-10 Vol.49 No.10

1448

ments[7]. Object detection enhances efficiency, safety,

and decision-making by enabling automated analysis

and interpretation of visual inputs. Real-time object

detection further extends these benefits by providing

immediate insights, allowing for swift responses to

dynamic environments. However, There are many ob-

stacles[8] to overcome when implementing real-time

object detection on specially custom-built edge de-

vices, mainly related to hardware limitations and proc-

essing efficiency. Due to the restricted resources of

edge devices, real-time processing requires high com-

putational power and low latency, which are challeng-

ing to achieve. Composing custom code for these de-

vices introduces a significant difficulty, as pro-

grammers have to manage power consumption and

thermal concerns while optimizing algorithms to oper-

ate well on less capable hardware. Furthermore, be-

cause these devices are custom-built, it is frequently

necessary to deal with various possibly incompatible

hardware and software components, making it more

challenging to guarantee reliable and consistent

operation. These limits make deploying real-time ob-

ject detection models on edge devices more difficult,

which forces large trade-offs between accuracy,

speed, and power consumption. To address these is-

sues, it is crucial to optimize algorithms and models

to perform effectively in resource-constrained settings.

This optimization can be achieved through techniques

such as model compression, optimization, quantiza-

tion, and hardware acceleration.

The contributions of this study are summarized as

follows:

1. This paper demonstrates the implementation of

the TensorFlow Lite (TF-Lite) model on a cus-

tom-built edge device, offering a more realistic

assessment of the model’s performance on re-

source-constrained environments compared to

traditional simulation work. This pioneering

contribution moves beyond the limitations of

simulation-based testing.

2. The study enhances TensorFlow Lite model per-

formance on a custom edge device, providing

insights into its behavior in limited-resource

environments. It also introduces innovative cus-

tom code for comprehensive performance analy-

sis, surpassing previous demonstrations and en-

hancing the model’s resilience, making it more

suitable for real-world edge applications.

3. The study improves the existing approaches by

deploying a TensorFlow Lite model on an edge

device and parameter optimization with com-

parative assessment. The optimized parameters

and comparative evaluations show the proposed

methodology outperforms existing approaches,

paving the way for real-world edge application

breakthroughs.

Ⅱ. Related Work

TinyML, which is an abbreviation for “tiny ma-

chine learning,” is a trend that is currently being in-

vestigated by academics within the field of in-

telligence[9]. The term “lightweight model” refers to

a model that is designed to simplify the deployment

of machine learning[10] capabilities on devices that

have minimal resources. Examples of such devices are

mobile phones and microcontrollers. TinyML makes

it possible for these devices to carry out a wide variety

of tasks that are associated with artificial intelligence

in a variety of fields, including the military, social,

medical professions, supply chain operations, and oth-

er areas. Tf-lite is used for solving the TinyML de-

ployment problem[11] developed by Google specifi-

cally for on-edge devices, addresses the resource limi-

tations often associated with standard

TensorFlow[12,13].

In spite of the fact that a great number of academics

have made substantial use of TensorFlow Lite for

projects on edge devices, none of them have yet adapt-

ed it for devices that are specifically designed to meet

particular requirements.

According to [11], YOLOv4 was successfully im-

plemented using TensorFlow Lite. Although the im-

plementation was successful, the study did not employ

performance evaluation criteria to emphasize its im-

portance, nor did it specify the particular edge device

used. In [14], TensorFlow Lite was successfully in-



논문 / Lightweighted Real-Time Object Detection on a Custom Edge Device

1449

tegrated into a Raspberry Pi 4, enabling real-time dog

identification and corresponding notifications. Despite

the functionality being implemented, the authors did

not provide any performance statistics for comparison,

such as accuracy or frames per second (FPS).

Additionally, there was no mention of the latency in-

volved in the real-time system throughout their

discussion.

Utilizing TensorFlow Lite, which functions on mo-

bile devices, [15] developed enhanced algorithms for

executing matrix multiplications of critical kernels, in-

cluding convolution and matrix multiplication, while

optimizing the kernels of the CNN model. However,

their research did not evaluate the precision of their

work or the minimum FPS that their model could ach-

ieve on their system.

[16] have developed a garbage management system

utilizing a Convolutional Neural Network (CNN) im-

plemented on an Arduino microcontroller with

TensorFlow Lite. The system includes a number of

sensors, and the authors provided data on the accuracy

and processing time for each type of recognized

waste. However, their reported accuracy is lower com-

pared to our study, and the processing time is sig-

nificantly longer. A notable distinction is that this ap-

proach employs a custom edge device.

Ⅲ. Proposed Methodology

This article discusses the utilization of a recently

constructed specialized edge device. The complete

specifications, including the number of ports and other

details of the custom edge device, are provided in

Table 1. From the perspective outlined in Figure 1,

a bird’s-eye view of the device in operation is

presented. Additionally, a 4K USB HD webcam mod-

ule has been incorporated to facilitate the capture of

real-time video.

This study consists of two main components, as

detailed in Figure 2. The first phase involves develop-

ing the model, a critical step in the process. At this

stage, it is crucial to construct a dataset tailored to

the specific needs. Following this, we will proceed

with preprocessing and model training. In this case,

the tflite0 model was utilized, which was pre-trained

on the COCO dataset by Google. After training, the

model will be converted into a TensorFlow Lite for-

mat using the TensorFlow runtime.

In the second phase, known as the deployment

stage, our objective is to effectively implement the

model on the edge device. Initially, we install all re-

quired libraries and camera modules. Subsequently,

we adapt the model to align with the specifications

of both the board and the model itself. Once we ach-

ieve satisfactory performance results through our cus-

tom code, we proceed with deploying the model on

the edge device. If the results are insufficient, we en-

Feature Description

Architecture AArch64

CPU Mode 32-bit and 64-bit

CPU Cores 6 (3 per socket, 2 sockets)

Threading Single thread per core

CPU Base Clock Speed 500 MHz

CPU Boost Clock Speed 2208 MHz

Camera 4K USB webcam

Image Sensor Sony IMX415 8MP CCD

Video Resolution Up to 3840x2160 (UHD)

Video Frame Rate 30 FPS

Connectivity

1x HDMI
3x USB
1x Ethernet
Wi-Fi (IEEE 802.11b/g/n/ac)
Bluetooth

Table 1. Custom edge device specification

Fig. 1. Perspective top view of the custom edge device
in the study



The Journal of Korean Institute of Communications and Information Sciences '24-10 Vol.49 No.10

1450

hance the performance through parameter opti-

mization, such as adjusting the number of CPU

threads, camera resolution, maximum detected items,

and their thresholds based on performance metrics ob-

served in the terminal. Should the model still under-

perform, we revert to the model development phase

to modify processing steps, retrain the model, and iter-

ate through the stages again. This iterative process al-

lows us to develop a robust system that can be ad-

justed without the need for a complete rebuild.

By employing this approach, we can make regular

modifications to the model as needed, ensuring that

the proposed scheme remains both effective and

efficient.

Ⅳ. Experimental Setup

Due to the novelty and customized nature of our

device, it is essential to initially install the operating

system. We have chosen Ubuntu 20.04 from Khadas

for this purpose. To transfer the vim3-ubuntu-20.04-

gnome-linux-4.9-fenix-1.3-221118-emmc, a custom-

ized version of Ubuntu developed by Khadas, we use

the USB-burning tool. The first step of the installation

process involves using an A-type port and a C-type

port to establish a connection between the edge device

and the host computer. After the operating system is

successfully installed, we disconnect the power cable

and then use an adapter to power the device.

Following this, the Ubuntu operating system will be-

gin its startup process. To run the TensorFlow Lite

model on the edge device, acquiring the appropriate

libraries is crucial. This task can be completed seam-

lessly once Ubuntu is up and running. Subsequently,

we require tensorflow, tensorflow inference, python

3, and other essential libraries to execute the sug-

gested object identification model on the edge device.

To determine if the TensorFlow Lite (tf-lite) model

is compatible with the edge device developed by

Google, this article examines the Convolutional

Neural Network (CNN) model, specifically the lite-

model_efficientdet_lite0_detection_metadata_1.tflite.

This Google Edge device model has been trained us-

ing the COCO dataset, which includes 80 object cate-

gories and 330,000 images. The model operates with

a default configuration of fifty epochs and a batch

size of sixty-four, and each execution involves just

one step. Although TPU is an option, it is not utilized

Fig. 2. Architechcural workflow of the proposed study



논문 / Lightweighted Real-Time Object Detection on a Custom Edge Device

1451

in this instance. Moreover, the default verbosity level

is set to 0, but we can adjust it according to our needs.

After executing the update and upgrade commands on

Ubuntu, we cloned one of the official Google scripts

and made specific modifications to it. We emulated

the code seen in TensorFlow Lite examples to achieve

this. Subsequently, we installed Python 3 to run the

code or make any necessary adjustments. In order to

execute our code, we created a virtual environment,

referred to as a venv in Python, to separate it from

the main libraries and guarantee that all necessary li-

braries are contained within the venv. This prevents

any interference with the dependencies of the main

library.

The remaining steps are illustrated in Figure 3,

which presents the flow diagram guiding the deploy-

ment of this method. This paper identifies two areas

requiring optimization: support for TensorFlow Lite

(tflite) and the camera port, which necessitate mod-

ifications specific to the device. For this particular

case, we reverted the tflite-support file to version 0.4.3

and conducted multiple tests to identify the camera

port correctly. We discovered that neither the default

value of 1 nor any other values functioned correctly,

leading us to set it to 0. Nevertheless, in the event

that the camera undergoes a change, it will be neces-

sary to modify the port settings once more.

Additionally, we developed our own primary Python

script to execute the tflite model, incorporating func-

tionalities to measure performance metrics such as

memory consumption and latency distribution. We

may optimize the script to suit our requirements for

assessing and adjusting the parameters of the model.

The TensorFlow Lite model used in this study is

named ’efficientdet_lite0.tflite’. Upon activation, the

camera automatically opens and begins object

detection. Analysis of the data highlights the excep-

tional nature of the work documented in this paper,

surpassing other efforts. The system achieves an accu-

racy of 94.17%, operates at an average frame rate of

15 FPS, and maintains a system latency of just 37

milliseconds, with real-time results visible in Figure

4, which also proves computational efficiency.

Fig. 4. Detection of the objects using the edge device

Ⅴ. Performance Evaluation

5.1 Parameter Optimization
By modifying parameters, the research emphasizes

a significant enhancement in the system’s perform-Fig. 3. Procedure for deploying the TensorFlow lite
model in the edge device.



The Journal of Korean Institute of Communications and Information Sciences '24-10 Vol.49 No.10

1452

ance and efficiency. The optimized key parameters in-

clude the number of CPU threads (num_threads), the

maximum number of detection results (max_results),

and the score threshold for detections (score_thresh-

old)[18]. The num_threads parameter determines the

number of concurrent CPU threads utilized, impacting

the system’s computational velocity. Augmenting this

numerical value can enhance performance by capital-

izing on multi-core processors, although it must be

carefully weighed against potential rises in power

consumption. The max_results option restricts the

quantity of identified objects in each frame, thereby

decreasing computing burden and enhancing real-time

efficiency. The score_threshold parameter establishes

the lowest degree of confidence required for de-

tections to be valid, thus managing the trade-off be-

tween accuracy and false positive rates. Increasing the

threshold levels decreases the occurrence of false pos-

itive results, whilst decreasing the threshold levels en-

hances the sensitivity.

The enable_edgetpu parameter and camera reso-

lution (width and height) were left at their default set-

tings to ensure compatibility and optimize perfor-

mance. The Edge TPU is a specialized hardware

device created to enhance the performance of execut-

ing machine learning models in edge computing envi-

ronments, which this device does not have. The de-

fault camera resolution provides sufficient detail for

object detection without overwhelming the machine.

This research achieves optimal performance in re-

al-time object detection on a custom edge device by

adjusting the parameters, highlighting parameter opti-

mization’s importance in achieving a balance between

computing efficiency, accuracy, and responsiveness.

5.2 Performance Metrics
This work evaluates performance using the follow-

ing metrics, utilizing a custom-created Python file to

provide a more versatile insight into the model and

its performances:

5.2.1 Accuracy

Accuracy is determined by the proportion of cor-

rectly categorized objects among all detected objects.

However, the model is limited to recognizing only

those objects that are within the scope of the training

image dataset on which it was trained, for this case,

the COCO dataset. If the image displayed in front of

the camera is not included in the training dataset, it

may result in the incorrect identification of the object

or the failure to recognize the object altogether.

5.2.2 Frames Per Second

FPS measures how quickly the model can process

frames. A higher FPS value signifies shorter inference

times and reduced delay. In this work, FPS is meas-

ured by counting the number of frames the model

processes in one second during real-time operation.

This is achieved by setting a counter while the model

processes the video stream and averaging the total

count over a designated test period.

5.2.3 Frame Processing Rate

FPR (Frame Processing Rate) calculates the pro-

portion of frames processed incorrectly among all

frames handled by the system. A lower FPR indicates

more efficient and accurate frame processing, reflect-

ing superior system performance. It is calculated by

dividing the number of frames incorrectly processed

by the total number of frames processed during the

operation. In this work, FPR is measured by running

the model on a dataset where accurate frame process-

ing is crucial. Each frame’ s processing outcome is

meticulously logged, and the percentage of frames in-

correctly processed is subsequently determined.

5.2.4 Inference Time

Inference time measures how long the model takes

to process and make predictions on a single frame.

A shorter inference time indicates faster processing

and reduced latency, showcasing a more efficient

model. It is measured by the amount of time the model

requires to process one input before producing a

prediction. To quantify this, the Python script in this

work records the start and finish times for each frame

or input during the model’s inference call and then

calculates the average of these times.

5.2.5 Latency Distribution

Latency distribution assesses how delays are spread

across various frames. A skewed distribution may in-



논문 / Lightweighted Real-Time Object Detection on a Custom Edge Device

1453

dicate performance inconsistencies, while a uniform

latency distribution signifies consistent performance

across all frames. This metric is evaluated by record-

ing the inference times in real-time for multiple inputs

and then plotting these times to visualize the

distribution. This approach facilitates comprehension

of the model’s variability and enables the identi-

fication of the most prevalent inference times in this

experiment.

5.2.6 Memory Usage

This metric measures the amount of memory the

model consumes during inference or while the model

is running. Lower memory usage signifies a more effi-

cient model architecture and reduced computational

overhead. To monitor the system’s memory use, it is

examined both before and during the model’s

operation. In this study, the memory_usage function

from the Python resource library was utilized to track

memory consumption while the video actively de-

tected objects.

5.3 Performance Analysis
Based on the data presented in Table 2, it is evident

that[11] lacks statistical data regarding accuracy, aver-

age FPS, or latency. Moreover, the authors do not

specify the type of edge device used for object

detection. In contrast, the paper[14] specifies the use

of a Raspberry Pi 4 for dog identification but fails

to include performance assessment measures such as

device latency, FPS, accuracy, or precision.

Further investigation into another study[16] reveals

its use of TensorFlow Lite for trash detection, specifi-

cally identifying materials such as glass, paper, metal,

plastic, and even cupboards. This model reports an

accuracy of 91.76%, which is lower than the accuracy

achieved by the proposed work. Regrettably, the study

omits details on FPS or inference time, although it

notes an exceedingly long inference time of 358.95

milliseconds when using an Arduino, which is a sig-

nificant delay.

The work[17] utilizes TensorFlow on a Raspberry

Pi 4 to aid visually impaired individuals but does not

provide statistics on the model’ s accuracy or latency.

However, they report successfully establishing a delay

of fifteen milliseconds, achieving their objective.

In comparison, this article’s findings demonstrate

exceptional performance with an accuracy rate of

94.17%, impressively low latency of 0.057 seconds,

and a high average FPS of 30, surpassing the results

of the aforementioned studies.

The performance findings detailed in Table 2 have

not been documented or evaluated in previously pub-

lished works. This study conducted extensive research

to enhance understanding of the model and the custom

edge device, obtaining these significant results. When

executed on the board, the model requires a total of

424,996 bytes, and the FPR is 3.4277, indicating high

efficiency and accuracy.

The histogram in Figure 5 depicts latency dis-

tribution across several CPU threads. It demonstrates

Researches Accuracy Average FPS Inference time (s) Detected object Implemented Device

[11] Not specified Not specified Not specified Any Objects Not specified

[14] Not specified Not specified Not specified Only Dog Raspberry Pi 4

[16] 91.76 Not specified 0.35895 Cardboard, Paper, Metal, Plastic, Glass Arduino

[17] Not specified 4.5 Not specified Object detection for blind people Raspberry Pi 4

This work 94.17% 38 0.056 80 different objects Custom Edge Device

Table 2. Comparative analysis of the proposed work with the existing models

Fig. 5. Latency distribution over CPU threads.



The Journal of Korean Institute of Communications and Information Sciences '24-10 Vol.49 No.10

1454

that “CPU thread 4” constantly exhibits lower latency

values, reaffirming its efficiency. Table 3 compares

CPU threads, emphasizing memory utilization, aver-

age latency, frame processing rate, mean latency, me-

dian latency, and inference time. The “CPU thread

4” has superior performance, minimal memory usage

of 424996.98, low average latency of 0.057, and fast

inference time of 0.056. Additionally, it achieves the

greatest FPR of 3.4277, showing an optimal balance

and high efficiency. Although the mean and median

latency of CPU threads 5 and 6 are better, they are

inconsistent, as shown in Figure 5. Additionally, CPU

thread 4 has all the upper hand in other aspects, and

we wanted to set aside some CPU thread if some

emergency arises, which could be of significant help.

Table 4 evaluates the upper limit of recognized

entities. The ideal configuration involves identifying

three objects, achieving the lowest latency of 0.0573,

the highest FPR of 3.4277, the lowest inference time

of 0.0561, and the highest FPS of 38. This arrange-

ment effectively optimizes the trade-off between ve-

locity and precision. Table 5 assesses the threshold

values, determining that 0.3 is the most favorable. The

model achieves the lowest memory use of 424996,

with an average latency of 0.0573 and an inference

time of 0.0561. Furthermore, it achieves a maximum

FPR of 3.4277 and FPS of 41, optimizing processing

efficiency and accuracy, respectively.

The ideal and best outcomes are attained by the

equitable distribution of computational resources and

effective parameter configurations that minimize la-

tency and memory consumption while maximizing

processing speed and accuracy. More precisely, the

setup, including “CPU thread 4” and a threshold of

0.3, optimally utilizes the CPU threads to process data

swiftly, minimizes processing delays, and ensures

consistently high frame rates. Moreover, the config-

uration for recognizing three objects achieves a har-

monious equilibrium between the detection accuracy

and the processing speed, guaranteeing that the system

can successfully manage several objects without over-

burdening the device. The adjusted settings improve

the system’s performance by effectively controlling

computational load and achieving faster and more ac-

curate object detection.

The tradeoffs entail carefully managing memory

utilization, minimizing latency, and optimizing proc-

essing speeds. Reduced latency and inference dura-

tions are directly related to increased FPS, improving

real-time performance. The optimized parameters are

shown in the tables and selected, exhibiting efficient

setups by ensuring minimal delay and inference times

while optimizing processing rates and FPS, which are

vital for real-time applications that require speed and

accuracy. The results show no distinct performance

tendency relative to parameters. Thus, optimal settings

must be manually identified using a brute-force ap-

proach, balancing faster inference times with accuracy

and FPS as needed.

No. of CPU
thread

Memory
usage (avg)

Latency
(avg)

FPR
(avg)

Mean
latency

Inference
time (s)

2 436742.48 0.088 3.053 0.088 0.084

3 436147.14 0.068 3.246 0.068 0.067

5 437356.88 0.060 3.337 0.060 0.058

6 436423.60 0.060 3.311 0.060 0.060

4 424996.98 0.057 3.4277 0.070 0.056

Table 3. Performance analysis with CPU threads

Max
identified

object

Memory
usage

Latency
(avg)

FPR
(avg)

Inference
time (s)

FPS
(avg)

1 437076 0.0583 3.3591 0.0581 32

2 438372 0.0581 3.2576 0.0579 34

3 424996 0.0573 3.4277 0.0561 38

4 436660 0.0578 3.3633 0.0574 36

5 435868 0.0580 3.3643 0.0580 32

6 435868 0.0575 3.3628 0.0574 33

Table 4. Analysis with the max identified object

Threshold
Memory

usage
(avg)

Latency
(avg)

FPR
(avg)

Inference
time (s)

FPS
(avg)

0.1 437153 0.0583 3.2168 0.0581 32

0.2 437154 0.0581 3.2264 0.0578 33

0.3 424996 0.0573 3.4277 0.0561 41

0.4 437168 0.0582 3.3289 0.0574 41

0.5 436440 0.0578 3.3287 0.0575 43

0.6 437104 0.0582 3.3357 0.0574 48

Table 5. Performance comparison with threshold values



논문 / Lightweighted Real-Time Object Detection on a Custom Edge Device

1455

Ⅵ. Conclusion

In this study, TensorFlow Lite was employed to

facilitate real-time object recognition on a re-

sourceconstrained edge device specifically designed

for this purpose -a commendable achievement. The

study also outlines effective procedures and guidelines

for implementing and assessing performance. It ach-

ieved a 94% accuracy rate while maintaining minimal

latency and delivering 30 FPS. Furthermore, a thor-

ough comparison with previous studies clearly in-

dicates that this effort has surpassed earlier outcomes.

Enhancing accuracy and FPS will be the primary fo-

cus of our future endeavors to meet our objectives.

This will involve optimizing the FPS and integrating

the system into practical scenarios, such as a manu-

facturing execution system.

References

[1] N. Ding, C. Zhang, and A. Eskandarian,

“Saliendet: A saliency-based feature

enhancement algorithm for object detection for

autonomous driving,” IEEE Trans. Intell. Veh.,
2023.

(https://doi.org/10.1109/TIV.2023.3287359)

[2] I. García-Aguilar, J. García-González, R. M.

Luque-Baena, and E. López-Rubio, “Object

detection in traffic videos: An optimized

approach using super-resolution and maximal

clique algorithm,” Neural Comput. and Appl.,
vol. 35, no. 26, pp. 18999-19013, 2023.

(https://doi.org/10.1007/s00521-023-08741-4)

[3] A. Kaur, Y. Singh, N. Neeru, L. Kaur, and A.

Singh, “A survey on deep learning approaches

to medical images and a systematic look up

into real-time object detection,” Archives of
Computational Methods in Eng., pp. 1-41,

2021.

(https://doi.org/10.1007/s11831-021-09649-9)

[4] D. Horváth, G. Erdős, Z. Istenes, T. Horváth,

and S. Földi, “Object detection using sim2real

domain randomization for robotic

applications,” IEEE Trans. Robotics, vol. 39,

no. 2, pp. 1225-1243, 2022.

(https://doi.org/0.1109/TRO.2022.3207619)

[5] D. A. Forsyth, J. Malik, M. M. Fleck, et al.,

“Finding pictures of objects in large

collections of images,” in Object
Representation in Comput. Vision II:
ECCV’96 Int. Wkshp. Cambridge, UK, April
13-14, 1996 Proc. 2, pp. 335-360, Springer,

1996.

(https://doi.org/10.1007/3-540-61750-7_36)

[6] S.-W. Kim, K. Ko, H. Ko, and V. C. Leung,

“Edge-network-assisted real-time object

detection framework for autonomous driving,”

IEEE Netw., vol. 35, no. 1, pp. 177-183, 2021.

(https://doi.org/10.1109/MNET.011.2000248)

[7] A. B. Amjoud and M. Amrouch, “Object

detection using deep learning, cnns and vision

transformers: A review,” IEEE Access, 2023.

(https://doi.org/10.1109/ACCESS.2023.326609

3)

[8] H. Naeem, J. Ahmad, and M. Tayyab, “Real-

time object detection and tracking,” INMIC,

pp. 148-153, 2013.

(https://doi.org/10.1109/INMIC.2013.6731341)

[9] V. Rajapakse, I. Karunanayake, and N.

Ahmed, “Intelligence at the extreme edge: A

survey on reformable tinyml,” ACM Comput.
Surv., vol. 55, no. 13s, pp. 1-30, 2023.

(https://doi.org/10.1145/3583683)

[10] M. J. A. Shanto, R. Akter, D.-S. Kim, and T.

Jun, “Predicting bike-sharing demand: A

machine learning approach for urban mobility

analysis,” in 2023 14th Int. Conf. ICTC IEEE,

pp. 1079-1081, 2023.

(https://doi.org/10.1109/ICTC58733.2023.1039

3175)

[11] R. S. Praneeth, K. C. S. Akash, B. K. Sree, P.

I. Rani, and A. Bhola, “Scaling object

detection to the edge with yolov4, tensorflow

lite,” in 2023 7th IC-CMC, IEEE, pp. 1547-

1552, 2023.

(https://doi.org/10.1109/ICCMC56507.2023.10

084319)

[12] R. David, J. Duke, A. Jain, et al., “Tensorflow

lite micro: Embedded machine learning for

tinyml systems,” in Proc. Mach. Learn. and

https://doi.org/10.1007/s00521-023-08741-4
https://doi.org/0.1109/TRO.2022.3207619
https://doi.org/10.1007/3-540-61750-7_36
https://doi.org/10.1109/MNET.011.2000248
https://doi.org/10.1109/INMIC.2013.6731341
https://doi.org/10.1109/ICTC58733.2023.10393175
https://doi.org/10.1109/ICTC58733.2023.10393175
https://doi.org/10.1109/ICCMC56507.2023.10084319
https://doi.org/10.1109/ICCMC56507.2023.10084319


The Journal of Korean Institute of Communications and Information Sciences '24-10 Vol.49 No.10

1456

Syst., vol. 3, pp. 800-811, 2021.

(https://shorturl.at/8Yoej)

[13] V. AI, Tensorflow lite, VISO AI, Accessed:

2024-04-22, 2024.

[Online] Available: https://shorturl.at/PTCS4

[14] S. Swain, A. Deepak, A. K. Pradhan, S. K.

Urma, S. P. Jena, and S. Chakravarty,

“Real-time dog detection and alert system

using tensorflow lite embedded on edge

device,” in 2022 1st IEEE Int. Conf. Industrial
Electr.: Developments & Appl. (ICIDeA), pp.

238-241, 2022.

(https://doi.org/10.1109/ICIDeA53933.2022.99

69906)

[15] M. S. Louis, Z. Azad, L. Delshadtehrani, et

al., “Towards deep learning using tensorflow

lite on risc-v,” in Third Wkshp. CARRV, vol.

1, p. 6, 2019.

[16] N. C. A. Sallang, M. T. Islam, M. S. Islam,

and H. Arshad, “A cnn-based smart waste

management system using tensorflow lite and

loragps shield in internet of things

environment,” IEEE Access, vol. 9, pp. 153

560-153 574, 2021.

(https://doi.org/10.1109/ACCESS.2021.312831

4)

[17] M. Konaite, P. A. Owolawi, T. Mapayi, et al.,

“Smart hat for the blind with real-time object

detection using raspberry pi and tensorflow

lite,” in Proc. Int. Conf. Artificial Intell. and
its Appl., pp. 1-6, 2021.

(https://doi.org/10.1145/3487923.3487929)

[18] T. Authors, Object detection example on
raspberry pi, https://github.com/tensorflow/exa

mples/blob/master/lite/examples/object_detectio

n/raspberry_pi/detect.py Accessed: 2024-06-19,

2024.

Md Javed Ahmed Shanto

He has currently completed

his Masters’s degree and

working as a graduate

researcher at Networked System

Laboratory, IT-Convergence

Engineering in Kumoh National

Institute of Technology Gumi,

South Korea. He received his Bachelor of Science and

Engineering degree in Computer Science and

Engineering from the International University of

Business Agriculture and Technology, Bangladesh.

His research interests are Artificial Intelligence,

Machine Learning, Deep Learning, Federated

Learning, Edge AI and Blockchain.

[ORCID:0000-0002-4592-0041]

Dong-Seong Kim

He received his Ph.D. degree

in electrical & computer

engineering from the Seoul

National University (SNU),

Korea, in 2003. From 1994 to

2003, he worked as a full-time

researcher in ERC-ACI at SNU,

Korea. From March 2003 to February 2005, he

worked as a post-doctoral researcher at the Wireless

Network Laboratory in the School of Electrical &

Computer Engineering at Cornell University, NY.

From 2007 to 2009, he was a visiting professor with

Department of Computer Science, University of

California, Davis, CA. He is currently a Dean of

Industrial Academic Cooperation Foundation &

Director ICT Convergence Research Center (ITRC &

NRF advanced research center program) supported by

Korean government at Kumoh National Institute of

Technology. He is a senior member of IEEE & ACM.

His current main research interests are real-time IoT,

smart platform, industrial wireless control network,

networked embedded system & Field-bus.

[ORCID:0000-0002-2977-5964]

https://shorturl.at/8Yoej
https://doi.org/10.1109/ICIDeA53933.2022.9969906
https://doi.org/10.1109/ICIDeA53933.2022.9969906
https://github.com/tensorflow/examples/blob/master/lite/examples/object_detection/raspberry_pi/detect.py
https://github.com/tensorflow/examples/blob/master/lite/examples/object_detection/raspberry_pi/detect.py
https://github.com/tensorflow/examples/blob/master/lite/examples/object_detection/raspberry_pi/detect.py


논문 / Lightweighted Real-Time Object Detection on a Custom Edge Device

1457

Taesoo Jun

He earned his B.S. degree in

Electrical Engineering from

Seoul National University in

February

1998, followed by an M.S.

degree from the same institution

in February 2000. In December

2009, he successfully obtained his Ph.D. in Computer

Engineering from the University of Texas at Austin.

Demonstrating his commitment to research and

development, he served as the Director and Principal

Engineer for the SW Platform team/Global AI Center

at Samsung Research, Samsung Electronics, Seoul,

Korea, from 2010 to 2022. Since March 2022, he has

been contributing to academia as an Assistant

Professor in the Department of Computer SW

Engineering at Kumoh National Institute of

Technology. His diverse research interests encompass

distributed computing in smart environments,

intelligent systems for pervasive computing, AI

applications, SW platforms for intelligent systems,

and real-time systems.

[ORCID:0000-0002-1435-3769]


